Photic signaling by cryptochrome in the Drosophila circadian system.
نویسندگان
چکیده
Oscillations of the period (per) and timeless (tim) gene products are an integral part of the feedback loop that underlies circadian behavioral rhythms in Drosophila melanogaster. Resetting this loop in response to light requires the putative circadian photoreceptor cryptochrome (CRY). We dissected the early events in photic resetting by determining the mechanisms underlying the CRY response to light and by investigating the relationship between CRY and the light-induced ubiquitination of the TIM protein. In response to light, CRY is degraded by the proteasome through a mechanism that requires electron transport. Various CRY mutant proteins are not degraded, and this suggests that an intramolecular conversion is required for this light response. Light-induced TIM ubiquitination precedes CRY degradation and is increased when electron transport is blocked. Thus, inhibition of electron transport may "lock" CRY in an active state by preventing signaling required either to degrade CRY or to convert it to an inactive form. High levels of CRY block TIM ubiquitination, suggesting a mechanism by which light-driven changes in CRY could control TIM ubiquitination.
منابع مشابه
Exquisite Light Sensitivity of Drosophila melanogaster Cryptochrome
Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity th...
متن کاملAn extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
Photic entrainment of insect circadian rhythms can occur through either extraretinal (brain) or retinal photoreceptors, which mediate sensitivity to blue light or longer wavelengths, respectively. Although visual transduction processes are well understood in the insect retina, almost nothing is known about the extraretinal blue light photoreceptor of insects. We now have identified and characte...
متن کاملRhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene.
Much of the knowledge about cryptochrome function in Drosophila stems from analyzing the cryb mutant. Several features of this variant's light responsiveness imply either that CRYb retains circadian-photoreceptive capacities or that additional CRY-independent light-input routes subserve these processes. Potentially to resolve these issues, we generated cry knock-out mutants (cry0's) by gene rep...
متن کاملDopamine acts through Cryptochrome to promote acute arousal in Drosophila.
The fruit fly, Drosophila melanogaster, is generally diurnal, but a few mutant strains, such as the circadian clock mutant Clk(Jrk), have been described as nocturnal. We report here that increased nighttime activity of Clk mutants is mediated by high levels of the circadian photoreceptor CRYPTOCHROME (CRY) in large ventral lateral neurons (l-LN(v)s). We found that CRY expression is also require...
متن کاملHuman Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability
Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 21 21 شماره
صفحات -
تاریخ انتشار 2001